EUROPEAN SPACE AGENCY  NEWS RELEASE
Posted: February 2, 2008
ESA's orbiting  gamma-ray observatory, Integral, has made the first unambiguous discovery of  highly energetic X-rays coming from a galaxy cluster. The find has shown the  cluster to be a giant particle accelerator.  
The Ophiuchus galaxy  cluster is one of brightest in the sky at X-ray wavelengths. The X-rays detected  are too energetic to originate from quiescent hot gas inside the cluster and  suggest instead that giant shockwaves must be rippling through the gas. This has  turned the galaxy cluster into a giant particle accelerator. 
Most of the  X-rays come from hot gas in the cluster, which in the case of Ophiuchus is  extremely hot, at 100 million degrees Kelvin. Four years ago, data from the  Italian/ Dutch BeppoSAX satellite showed a possible extra component of  high-energy X-rays in a different cluster, the Coma cluster. 
"Two groups  analysed the data. One group saw the component but the other did not," says  Dominique Eckert, Integral Science Data Centre (ISDC), University of Geneva,  Switzerland. So Eckert and colleagues from ISDC launched an investigation into  the mystery. 
They turned to Integral and its five-year, all-sky survey and  found that ESA's orbiting gamma-ray observatory did show an unambiguous  detection of highly energetic X-rays, coming from the Ophiuchus cluster of  galaxies. These X-rays can be produced in two ways, both of which involve  high-energy electrons. 
The first option is that the electrons are caught in  the magnetic field threading through the cluster. In this case, the electrons  would spiral around the magnetic field lines, releasing synchrotron radiation in  the form of X-rays. 
The electrons would be extremely energetic, carrying  over 100 000 times the energy of the electrons in the alternative scenario,  which is that the electrons are perhaps colliding with microwaves left over from  the origin of the Universe and now bathe all of space. In such collisions, the  electrons lose some energy, emitted as X-rays. 
Determining which of these  scenarios is correct is the next job for the team. They plan to use radio  telescopes to measure the magnetic field of the galaxy cluster. They also plan  to use the High Energy Stereoscopic System (HESS) in Namibia. This giant  telescope looks for the brief flash of light generated when highly energetic  gamma rays collide with particles in Earth's atmosphere. If HESS sees such  flashes coming from Ophiuchus, then the astronomers will know that the  synchrotron scenario is correct. 
Either way, the electrons themselves are  most likely to be accelerated to high energies by shockwaves travelling through  the cluster gas. The shockwaves are set up when two clusters collide and merge.  The question is how recently Ophiuchus swallowed its companion cluster. 
In  the synchrotron scenario, the highly energetic electrons cool very quickly. If  the team find this to be the case, then the collision must still be in progress.  In the case of microwave scattering, cooling takes a long time and the collision  could have taken place at any time in the past. 
Once the scientists know,  they will be able to properly understand the history of the cluster. One thing  is already certain; nature has transformed the galaxy cluster into a powerful  particle accelerator, perhaps 20 times more powerful than CERN's Large Hadron  Collider (LHC), which begins operation in Switzerland this summer. 
"Of  course the Ophiuchus cluster is somewhat bigger," says Stephane Paltani, a  member of the ISDC team. While LHC is 27 km across, the Ophiuchus galaxy cluster  is over two million light-years in diameter."  
 
 
 

Nenhum comentário:
Postar um comentário