 
  Indeed, "Hubble" was something of a double-entendre. The name honored the late Edwin Hubble, but the telescope was also intended to pin down the Hubble constant — the expansion rate of the universe — by comparing the redshifts of key galaxies to their distances found using Cepheid variables.
However, this only works if you know the distances to local Cepheids in  our own galaxy well enough to calibrate the Cepheid distance scale as a whole.  They're rather unusual super giant stars, so none of them lie close enough to  the solar system for really accurate parallax measurements of their distances.  Accordingly, astronomers have been expending great efforts to deduce local  Cepheids' distances accurately in any way they can.
 
The best such measurements recently attained an accuracy of just a few  percent. Now a group of astronomers has broken that record — by using a unique  method to get a range on the bright Cepheid RS Puppis good to about 1.4  percent.
 
They did it by measuring "light echoes" of the star's pulsations on a  surrounding reflection nebula, combined with the star's accurately known  pulsation period, the speed of light, and some simple geometry.
 
RS Puppis varies in brightness (from magnitude 6.5 to 7.6) every 41.4  days. It is 10 times more massive than the Sun, 200 times larger, and on average  15,000 times more luminous. Pierre Kervella and his colleagues used the European  Southern Observatory's New Technology Telescope at La Silla, Chile, to record  the faint reflections of these light pulses moving across the nebula. The speed  at which they appeared to move, combined with the known speed of light, gave the  distance to the nebula and star: 6,500 light years plus or minus 90.
 
RS Pup is the only Cepheid embedded in a large nebula. "Light that  travels from the star to a dust grain to the telescope arrives a bit later than  light that comes directly from the star to the telescope," explains Kervella.  "As a consequence, if we measure the brightness of a particular, isolated dust  blob in the nebula, we obtain a brightness curve that has the same shape as the  variation of the Cepheid, but shifted in time." The delay is called a "light  echo," by analogy with a sound echo off, say, a canyon wall.
 
"Knowing the distance to a Cepheid star with such an accuracy proves  crucial to the calibration of the period-luminosity relation of this class of  stars," says Kervella.
 
RS Pup is especially important because it's one of the longest-period  nearby Cepheids, and few of these have been well measured. The new result should  help firm up the entire cosmic distance scale.
 
 
 

Nenhum comentário:
Postar um comentário